
A hybrid
spectral/boundary-integral

approach for transient
viscoelastic flow exiting a

channel
R.E. Khayat and N. Ashrafi

Department of Mechanical and Materials Engineering,
University of Western Ontario, London, Ontario, Canada

Keywords Boundary elements methods, Fluid dynamics

Abstract A hybrid spectral/boundary element approach is proposed to examine the influence of
Couette channel flow on transient coating of highly elastic fluids. The viscoelastic instability of
one-dimensional plane Couette flow is first determined for a large class of Oldroyd fluids with
added viscosity, which typically represent polymer solutions composed of a Newtonian solvent and
a polymeric solute. The Johnson-Segalman equation is used as the constitutive model. The velocity
profile inside the channel is taken as the exit profile for the emerging free-surface flow. The flow is
assumed to be Newtonian as it emerges from the channel. An estimate of the magnitude of the
rate-of-strain tensor components in the free-surface region reveals that they are generally smaller
than the shear rate inside the channel. The evolution of the flow front is simulated using the
boundary element method. For the channel flow, the problem is reduced to a non-linear dynamical
system using the Galerkin projection method. Stability analysis indicates that the channel velocity
may be linear or non-linear depending on the range of the Weissenberg number. The evolution of
the coating flow at the exit is examined for steady as well as transient (monotonic and oscillatory)
channel flow. It is found that adverse flow can exist as a result of fluid elasticity, which can hinder
the process of blade coating.

1. Introduction
Although steady coating flow has been extensively investigated, little effort
has been devoted to transient behavior. This is of course understandable since
it is the long-term flow, after transient effects die out, which is of practical
interest. However, when difficulties are encountered in a given coating process,
the solution to the problems may lie in the initial stages of the process, long
before the process reaches the steady state. It is thus important to examine the
initial transients, which may allow early control of possible problems. There is
also the issue regarding the time it takes for a coating process to reach steady
state. This issue is particularly important for polymeric fluids, which exhibit
different relaxation times, and, therefore, different transient response. Finally,
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the coating process can be inherently transient, and, consequently, may never
settle into steady behavior as a result of geometrical variations or constant
changes in processing conditions. This work examines transient effects by
focusing on the early stages of the blade coating process.

The coating process consists of applying a thin layer of fluid to a solid
substrate. This process can be of practical relevance, for instance, to the
electronics industry (where the eventual purpose of the layer is typically to
store information) and to the paint industry (where the purpose is typically to
form a protective layer). Most of the theoretical work so far concerning coating
flows has concentrated on Newtonian fluids (Kistler and Schweizer, 1997) and,
to a much lesser extent, on non-Newtonian fluids, including viscoelastic and
generalized Newtonian flows, touching processes in blade and roll coating (see
Ross et al., 1999 and the references therein).

In this study, the modeling and simulation of the early stages of blade
coating are examined in two dimensions. The fluid is initially confined between
two plates, one of which is set in motion to induce the flow. The problem thus
consists of obtaining the flow and stress fields inside a moving domain, as the
fluid emerges from the channel. The study emphasizes the influence of exit
flow, which is the fully developed flow inside the channel, on the emerging
fluid. In the present problem, the lubrication assumption cannot be used since
most of the interest lies in the vicinity of the flow front. In this region, the
lubrication assumption cannot capture the details typical of free surface flow
(fountain flow). In the present study, the flow at the front is captured accurately
since the fluid is assumed to be thick everywhere in the domain (away and near
the front).

The velocity profile inside the channel constitutes the major
non-homogeneous boundary condition for the moving domain problem. In
this study, the plane Couette flow (PCF) is assumed to be fully developed and
obeys the Johnson-Segalman (JS) constitutive model (Bird et al., 1987; Johnson
and Segalman, 1977). The presence of elasticity is expected to drastically alter
the stability and bifurcation picture in PCF, and yet no study has so far
predicted the non-linear bifurcation from the base flow. Similar to the case of
Taylor-Couette flow, there is experimental evidence that the base flow in a
channel may lose its stability as a result of fluid elasticity inside the tube
(Vinogradov et al., 1972). This type of instability is termed as “constitutive
instability”, as opposed to slip-induced instability. The emergence of surface
instability at the exit of an extrusion die (sharkskin and melt fracture) suggests
the possibility of a link with a hydrodynamic instability inside the channel,
away and upstream from the exit (Denn, 1990; Larson, 1992). More recent
studies based on more generalized constitutive models of the Oldroyd class
showed that the base flow in a channel can become unstable to small
perturbations for some range of Weissenberg numbers (Kolkka et al., 1988;
Malkus et al., 1990; Renardy, 1995). These generalized constitutive models

HFF
13,6

770



display a non-monotonic shear-stress/shear-rate curve. The range of instability
coincides with the negative slope of the stress curve. The choice of a
viscoelastic constitutive model for the present problem is crucial. The more
interesting response of transient blade coating is expected to emerge when
non-linear channel flow is considered. The JS equation is ideal in this case as it
leads to multiple non-linear profiles in the critical range of Weissenberg
numbers (Ashrafi and Khayat, 2000; Georgiou and Vlassopoulos, 1998). These
profiles, along with the stability and bifurcation diagrams, have been
extensively investigated recently (Ashrafi and Khayat, 2000). The method of
solution was based on the Galerkin projection method and low-order dynamical
systems. These techniques have been explored by Khayat (1999a, b) for various
non-linear and non-Newtonian problems in hydrodynamic stability. In this
paper, only a summary of methodology and results relevant to fully developed
PCF are reported, leaving the details to Ashrafi and Khayat (2000).

Once the channel velocity profile is imposed at the exit, the flow field of the
emerging fluid can be determined. This is a problem of the moving boundary
type, and its solution remains challenging (Floryan and Rasmussen, 1989;
Gabriel et al., 1997), particularly when non-linear viscoelastic effects are
included, in addition to geometrical non-linearities. Several numerical
techniques have been developed for the solution of moving boundary/initial
value problems. The boundary-element method (BEM) is much easier to use
than domain methods, especially for moving-domain problems. The present
paper is part of a series of studies on the applicability of the BEM to problems
of the moving-boundary type. Such problems include the planar deformation of
a drop in a confined medium (Bourry et al., 1999; Khayat, 1998a, b; Khayat et al.,
1997, 1998a, b, 2000), gas-assisted injection molding (Khayat et al., 1995), air
venting during blow molding and thermoforming (Khayat and Raducanu,
1998), and the transient mixing of Newtonian and viscoelastic fluids (Khayat,
1998a, b, 1999a, b).

2. Problem formulation for channel flow
In this section, only the flow inside the channel is examined (Figure 1). A
summary of problem formulation is given for the channel flow of a JS fluid.
Details of formulation and solution procedure as well as additional results are
given elsewhere (Ashrafi and Khayat, 2000). Only one-dimensional flow is
considered. The resulting equations are solved using the Galerkin projection.

2.1 Channel flow of a JS fluid
Consider the PCF of an incompressible viscoelastic fluid of density r, relaxation
time l, surface tension g, and viscosity h. In this study, only fluids that can be
reasonably represented by a single relaxation time and constant viscosity are
considered. The fluid considered here is a polymer solution composed of a
Newtonian solvent and a polymer solute of viscosities hs and hp, respectively.
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Therefore h ¼ hs þ hp: The channel flow is induced by the translation of the
lower plate, which move at velocity U, with the upper plate remaining
stationary. The velocity, time, space coordinates, and stress/pressure are
non-dimensionalized by d/l, l, d, and hp/l, respectively, where d is the gap
between the two channel plates. There are three important similarity groups in
the problem, namely, the Reynolds number, Re, the Weissenberg number, We,
and the solvent-to solute viscosity ratio, 1, which are given, respectively, by:

Re ¼
d 2r

hpl
; We ¼

Ul

d
; 1 ¼

hs

hp
; Ca ¼

lg

hpd
: ð1Þ

In this work, the stress is taken to be the combination of a Newtonian and a
polymeric contribution. In dimensionless form, the stress is equal to 1½7u þ
ð7uÞt� þ t; where u is the velocity vector, and t is the polymeric contribution to
the stress. Here 7 is the gradient operator, and ð7uÞt denotes the transpose of
7u. The continuity and conservation of momentum equations for a general
incompressible viscoelastic fluid are then given in dimensionless form as:

7 · u ¼ 0; Re
›u

›t
þ u ·7u

� �
¼ 27p þ 7 · tþ 172u; ð2Þ

where p is the pressure, and t is the time. The constitutive equation adopted in
this study belongs to the Oldroyd class of incompressible viscoelastic fluids:

›t

›t
þ u ·7t2 1 2

z

2

� �
½ð7uÞt · tþ t ·7u� þ

z

2
½7u · tþ t · ð7uÞt� þ t

¼ 7u þ ð7uÞt; ð3Þ

which includes both lower- and upper-convective terms. Equation (3) is often
referred to as the JS model (Ashrafi and Khayat, 2000). Here z [ [0, 2] and is a

Figure 1.
Schematic illustration of
the domain of
computation and
notation for the
boundary-integral
method

HFF
13,6

772



dimensionless material (slip) parameter. The value of z is a measure of the
contribution of non-affine motion to the shear tensor. For z ¼ 0, the motion is
affine and the Oldroyd-B model is recovered, whereas for z ¼ 2, the motion is
completely non-affine and the model is reduced to the Oldroyd-Jaumann model
(Bird et al., 1987). When z ¼ 0; and hs ¼ 0; the upper-convected Maxwell
model is recovered.

If the x-axis is taken to lie half-way between the two plates, and y is the
coordinate in the transverse direction, then the total shear stress corresponding
to the base (Couette) flow is given by:

Tb
xy ¼ 1We þ

We

1 þ zð2 2 zÞWe2
: ð4Þ

Here, We is a measure of the shear rate since the velocity, u(y, t), at the two
plates is given by uðy ¼ 0; tÞ ¼ We and uðy ¼ 1; tÞ ¼ 0: Equation (4) is perhaps
the most revealing result of the JS model. It reflects the possibility of a
non-monotonic behavior for the stress/shear-rate relation. Figure 2 shows the
behavior of the shear stress, Tb

xy; as a function of We for 1[ [0, 1] and z ¼ 0:2:
The figure indicates that the stress curves generally have two extrema
(a maximum and a minimum), which tend to merge as 1 increases. This
situation is reminiscent of the load/deformation behavior in elasticity. In the

Figure 2.
Steady-state shear

stress/shear-rate curves
in the

�
Tb

xy;We
�

plane
for z ¼ 0.2 (a ¼ 20.18),

and 1 [ [0, 0.1]. The loci
of the two extrema are
also shown, which join
into one curve denoted

here by Wec. The curves
in the figure resemble the

pressure/stretch-ratio
related to the inflation of

Mooney-Rivlin material
(Khayat and Derdouri,

1994, figure 2)
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case of non-linear inflation of a Mooney-Rivlin (hyperelastic) membrane, for
instance, the pressure also exhibits a similar behavior as function of the stretch
ratio for various Mooney constants (Khayat and Derdouri, 1994). The curve for
1 ¼ 0 is comparable to that of a Neo-Hookean solid, while the curve for a
Newtonian fluid ð1 ¼ 1Þ is comparable to the curve of a Hookean solid (see
figure 2 in the work of Khayat and Derdouri, 1994). There are two additional
curves included in Figure 2, namely those corresponding to the two extrema.
These curves are important since they correspond to the critical Weissenberg
numbers between which the base flow loses its stability.

The solution of the systems (1) and (2) is carried out using the Galerkin
projection method. For one-dimensional disturbance along the channel (x-axis),
the departure (from base flow) is reduced to the axial velocity, u( y, t), normal
stress difference, N( y, t), and shear stress, S( y, t). In this case, equations (1)-(3)
reduce to:

Re ut ¼ 1uyy þ Sy; ð5aÞ

Nt ¼ 2N þ 2ðWeS þ Suy þ S buyÞ; ð5bÞ

St ¼ 2S þ uy þ aðWeN þ Nuy þ N buyÞ; ð5cÞ

where

a ¼ z
z

2
2 1

� �
; S b ¼

We

1 þ zð2 2 zÞWe2

is the non-Newtonian contribution of the shear stress of the base flow, and
Nb ¼ 2We2=1 þ zð2 2 zÞWe2 is the corresponding first normal stress
difference. A subscript in equation (5) denotes partial differentiation. It is
important to observe that if there is no external (mean) pressure imposed inside
the channel, the departure of pressure is also zero. The flow departure is
represented by series of Chandrasekhar functions, which satisfy the
homogeneous (no-slip) boundary conditions (Chandrasekhar, 1961).

2.2 Galerkin projection and the dynamical system
The solution of equation (5) is carried out using the Galerkin projection method.
The variables u( y, t), N( y, t) and S( y, t) are represented by series of
Chandrasekhar functions that satisfy the homogeneous (no-slip) boundary
conditions. A suitable level of truncation is imposed, which leads to the final
non-linear dynamical system. A judicious selection process is applied for the
choice of the various modes in order to ensure the physical and mathematical
coherence of the final model. It is convenient to introduce the coordinate
transformation h ¼ ð y 2 1Þ=2. The general series representations for the
velocity and normal stress difference are then given by:
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uðy; tÞ ¼
XM

i¼1

uiðtÞfiðhÞ; ð6aÞ

Nðy; tÞ ¼
XM

i¼1

NiðtÞfiðhÞ; ð6bÞ

whereas the shear stress representation is taken as:

Sðy; tÞ ¼
XM

i¼1

SiðtÞf
0
iðhÞ; ð6cÞ

where fiðhÞ are the even and odd Chandrasekar functions, for even and odd i,
respectively (Khayat and Derdouri, 1994). Here M is the number of modes,
which is taken large enough to secure convergence (Ashrafi and Khayat, 2000).
The first-order even and odd functions are defined over the interval [21/2, 1/2].
Thus, for even i:

fiðhÞ ¼
coshðaihÞ

coshðai=2Þ
2

cosðaihÞ

cosðai=2Þ
; ð7aÞ

where the constantsai are the roots of the equation: tanhðai=2Þ þ tanðai=2Þ ¼ 0:
For odd i:

fiðhÞ ¼
sinhðaihÞ

sinhðai=2Þ
2

sinðaihÞ

sinðai=2Þ
; ð7bÞ

where ai satisfy cothðai=2Þ2 cotðai=2Þ ¼ 0: The functions f0
iðhÞ are related,

but are not exactly, to the derivatives of fiðhÞ; they are given by

f0
iðhÞ ¼

1

ai

dfi

dy
:

The first step in the Galerkin projection method consists of inserting expression
(6) into equation (5). Each of equation (5) is then multiplied by the appropriate
mode and is integrated over h [ ½21=2; 1=2�: One thus obtains a set of
non-linear and coupled ordinary differential equations that govern the
time-dependent expansion coefficients. The projection leads to explicit
expressions for the time derivative of uk and Nk, k [ [1, M ]:

duk

dt
¼

1

Re

XM

i¼1

aið1aiui þ SiÞAik; ð8aÞ
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dNk

dt
¼ 2Nk þ 2

XM

i¼1

ðWeSi þ S baiuiÞBik þ
XM

j¼1

aiuiSjCijk

" #
; ð8bÞ

The stress coefficients, Sk, are governed implicitly by:

XM

i¼1

dSi

dt
þ Si 2 ð1 þ aN bÞaiui

� 	
Dik 2 a We BkiN i 2 aaiui

XM

j¼1

NjCikj

( )
¼ 0;

ð8cÞ

where

Aik ¼ f00
i jfk

� 
; Bik ¼ f0

ijfk

� 
; Cijk ¼ f0

if
0
jjfk

D E
; and Dik ¼ f0

ijf
0
k

� 
are constants defined through the integral operation

· j ·h i ;
Z 1=2

21=2

· · dh:

Note that

f00
i ðhÞ ¼

1

a2
i

d2fi

dy2
:

The derivatives dSk=dt can be obtained explicitly in terms of the expansion
coefficients either analytically or numerically, depending on the number of
modes used. The solution of equation (8) is obtained after a suitable truncation
level is introduced, i.e. after a suitable number of modes, M, is assumed.
Assessment of convergence was previously conducted (Ashrafi and Khayat,
2000), and it was found that convergence is reached for M . 6: Comparison
against the finite-element results of Geourgou and Vlassopoulos (1998) showed
that the “exact” velocity profiles, including discontinuities, can be captured by a
small number of modes. In addition, the overall stability and bifurcation picture
is not significantly influenced by the number of modes adopted, and that
expansion of the flow field with M ¼ 2 lead to qualitatively accurate results.
Thus, most of the profiles reported later are based on two-mode expansions.

Linear stability analysis indicates the existence of two critical Weissenberg
numbers, Wec1 and Wec2, where an exchange of stability occurs between the
base (linear) flow and a non-linear Couette flow. The range We , Wec1 will be
referred to as the pre-critical range, Wec1 , We , Wec2 as the critical range,
and We . Wec2 as the post-critical range. For a typical fluid, z ¼ 0:2; 1 ¼ 0:04;
the base flow loses its stability to non-linear flow at Wec1 ¼ 1:89 and
recovers linear behavior at Wec2 ¼ 7:78: The base flow is thus stable for both
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the pre-critical and post-critical ranges. While the (steady) flow in the pre- and
post-critical ranges is unique, there is a multitude of solution branches in the
critical region (Ashrafi and Khayat, 2000).

The typical bifurcation picture is shown in Figure 3 for the range z [ [0, 1]
and 1 ¼ 0:04: The bifurcation diagrams are shown for the normal stress
coefficient N s

1ðWe; zÞ; which is plotted against We. The overall pre-critical
(We , Wec1), critical (Wec1 , We , Wec2), and post-critical (We . Wec2)
ranges can be identified from each bifurcation branch in the figure. Recall that
in the critical range, a non-trivial steady-state branch emerges, which coincides
with the loss of stability of the base flow and the emergence of a stable
non-linear velocity profile. Other non-trivial solution branches were also found,
in the critical range, but not all of them are stable (Ashrafi and Khayat, 2000).

In practice, it is well known that in real systems, physical instabilities are
observed when the flow rate and/or the level of elasticity are high. Figure 3
clearly shows that both the flow rate and fluid elasticity are the determining
factors behind the destabilization of the base flow. Recall that the flow rate is
controlled by We, and the level of elasticity by both We and z. Finally, the
stability picture near Wec1 and Wec2 was established numerically since linear
stability analysis cannot be applied in the vicinity of the critical points, which

Figure 3.
Bifurcation and

exchange of stability of
the base flow. Stable
steady-state solution

branches N s
1ðWe; zÞ

�� �� as
function of We for z [
[0, 1] and 1 ¼ 0.04. Note

that the branches are
symmetric with respect

to the horizontal axis
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are non-hyperbolic fixed points. A multiple-scale analysis was also carried out
to confirm the numerical results (Ashrafi and Khayat, 2000).

3. Problem formulation for free-surface flow
In this section, the governing equations and boundary conditions are reviewed
together with some of the assumptions taken for the blade-coating flow. For
simplicity, the fluid is assumed to be viscous incompressible and Newtonian as
it emerges from the channel. Only low-Reynolds-number flow, typically
characterized by small velocities, small length scales and/or high viscosity, will
be considered. In this limit, the inertia terms in the momentum equation are
negligible, so the flow is in a state of creeping motion.

3.1 Problem statement and governing equations
With the fully developed channel flow established from the previous section,
the evolution of the free-surface flow is sought as the fluid emerges from the
channel. The problem at the exit is a difficult one given the transient nature of
the flow and the presence of a free-surface. Although conventional methods,
such as the finite-difference and finite-element methods, are well adapted to
handle complex non-linear flow configurations, these methods are inadequate
for moving boundary problems, given their requirement for adaptive meshing
and remeshing. From this standpoint, the BEM is much more convenient since
only the boundary needs to be discretized, but the BEM is essentially
inadequate to handle non-linear flow. This is a major problem that still plagues
the BEM despite recent developments in the so-called “non-linear” techniques
(Power and Wrobel, 1995). In order to apply the BEM, it is assumed that the
flow at the exit behaves like a Newtonian flow. This is not an unreasonable
assumption given the relatively low shear and elongation rates that the fluid
experiences after it leaves the channel (see Section 6). Inertia is neglected as
well, so the flow is in a state of creeping motion.

At any instant, t, the fluid is assumed to occupy a 2D region, V(t), which is
bounded by G(t). It is convenient to take V(t) as the inner domain, excluding
G(t). The fluid is taken to be neutrally buoyant so the effects of gravity and any
external body forces are negligible. The conservation of mass and linear
momentum equations are (in dimensionless form) given by:

7 · uðx; tÞ ¼ 0; 7 ·sðx; tÞ ¼ 0; x [ VðtÞ< GðtÞ ð9Þ

where x(x, y) is the position vector in the (x, y) plane, u(x, t) the velocity vector,
and s(x, t) is the total stress tensor given in terms of the hydrostatic pressure
p(x, t) and the rate-of-strain tensor. Thus, although the fluid is Newtonian, it is
still assumed to be composed of a solvent and a solute of viscosities hs and hp,
respectively, and a combined viscosity h ¼ hs þ hp: In this case, equation (2)
reduces to t ¼ 7u þ ð7uÞt; and the dimensionless stress is given by
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sðx; tÞ ¼2pðx; tÞIþ ð1þ 1Þ b7uðx; tÞ þ7utðx; tÞc; x [ V ðtÞ< GðtÞ; ð10Þ

where I is the unit tensor. It is important to note that the acceleration term
›u=›t in the momentum conservation equation has been neglected, so that for a
Newtonian fluid, the formulation in question is not strictly unsteady, but
quasi-steady. This quasi-steady state assumption is valid whenever L 2/n! T,
where L and T are typical characteristic length and time of the flow, and
n ¼ h=r is the kinematic viscosity (r being the density). In the present case,
T , L/U, U being a typical value of the driving velocity. Thus, for the
quasi-steady state assumption to apply, one must have UL/n ! 1. This is
indeed typically the case for fluids of interest to coating problems. Physically,
the quasi-steady state approximation means that a Newtonian fluid
immediately adjusts to changes in the movement of the boundary or
boundary conditions.

3.2 Boundary and initial conditions
The boundary G(t) is composed of part of the channel, Gc(t), and the
free-surface, Gf (t). Note that Gc(t) changes with time as the fluid emerges out of
the channel and spreads on the lower plate. Thus, GðtÞ ¼ GcðtÞ< GfðtÞ: While
the boundary conditions on Gc(t) are straightforward to implement, those on
Gf(t) must be examined more closely. The fluid is assumed to adhere to the
channel walls, so that stick boundary conditions apply. More generally, the
velocity is assumed to be fully prescribed on Gc(t). The fluid is assumed to obey
plane Couette flow at the exit of the channel. In addition, the stick and
no-penetration conditions hold at the walls of the channel. These conditions
may be written compactly in the form:

uðx; tÞ ¼ ucðxÞ; x [ GcðtÞ: ð11Þ

Thus, the flow field is determined through the solution of equations (9) and (10),
which is obtained subject to condition (11), and the dynamic and kinematic
conditions on Gf(t). The proper choice and implementation of a kinematic
condition is generally not obvious (Kistler and Schweizer, 1997).

Regarding the kinematic condition on the free-surface, the front is assumed
to deform with the fluid velocity, such that

dx

dt
¼ uðx; tÞ; x [ GfðtÞ: ð12Þ

The dynamic condition on the free-surface are based on the continuity of the
tangential stress (no traction) and discontinuity of normal stress caused by the
surface tension, and thus

tðx; tÞ ¼ Ca21nðx; tÞ7 · nðx; tÞ; x [ GfðtÞ; ð13Þ
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where tðx; tÞ ¼ sðx; tÞ · nðx; tÞ is the traction, and n is the normal unit vector at
the front. Note that boundary condition (13) is derived under conditions of
equilibrium and uniform surface tension, and its validity under dynamic
conditions is simply assumed. The condition also assumes implicitly that the
flow activity of the fluid outside the free-surface (air) is negligible with the
(atmospheric) pressure taken as zero.

Finally, an initial condition is needed. In this study, the fluid is assumed to
be at rest initially, so that the following condition holds:

uðx; t ¼ 0Þ ; 0; x [ Vðt ¼ 0Þ< Gðt ¼ 0Þ: ð14Þ

The systems (9) and (10), subject to conditions (11)–(14), constitute a
well-posed problem.

3.3 Boundary integral equation
The general time-dependent-integral equation for a moving domain is given by
(Power and Wrobel, 1995):Z

GðtÞ

tðy; tÞ · JðxjyÞ dGy 2

Z
GðtÞ

nðy; tÞ · uðy; tÞ · KðxjyÞ dGy

¼ cðx; tÞ · uðx; tÞ; x [ VðtÞ< GðtÞ

ð15Þ

where J and K are the usual symmetric and anti-symmetric tensors with
respect to relative position r¼x 2 y of two points at x and y, and are given as
(Power and Wrobel, 1995):

JðxjyÞ ¼
1

4p
I logr 2

rr

r 2

� �
; KðxjyÞ ¼ 2

1

p

rrr

r 4
; ð16Þ

where r¼ jrj. The function c(x, t), for x [ G(t), depends on the geometrical
form of the boundary; its value arises from the jump in the value of the velocity
integrals as the boundary is crossed. When the boundary is Lyapunov smooth,
which requires that a local tangent to the moving boundary exists everywhere,
the function cðx; tÞ ¼ 1=2: This is the case if constant boundary elements are
used. Thus, the assumption of boundary smoothness is generally not valid in
the vicinity of sharp corners, cusps or edges. In general, since c(x, t) depends
solely on geometry, it may be evaluated assuming that a uniform velocity field
such as u(x, t) ¼ ue is applied over the boundary, e being the direction of the
velocity and u is its magnitude. Under these conditions, all derivatives
(including tractions and stresses) must vanish. Hence, at any time t, equation
(16) reduces to

cðx; tÞ ¼

Z
GðtÞ

nðy; tÞ · ½e · KðxjyÞ · e� dGy; x [ GðtÞ: ð17Þ
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Thus, at any time t, the form of the boundary G(t) is determined, and the
function c(x, t) is evaluated using equation (17). The boundary integral
equation (15) governs the flow variables at the boundary. It relates the velocity
to the traction on G(t). The traction is determined wherever the velocity is
imposed and vice versa. Hence, at the free-surface, where the traction is
specified, the velocity will be calculated. For the rest of the boundary, at the
moving wall and channel exit, the velocity is specified and the traction is
determined.

4. Solution procedure
In this section, a time-marching scheme is proposed to discretize equation (12).
Once the flow field is determined at a given time step from equation (15), the
location of the free-surface can be determined by solving equation (12). As the
boundary elements are distorted, the mesh is refined through element
subdivision. Consider the application of the integral equation (15) for a point on
the boundary, that is, for x [ GðtÞ ¼ GcðtÞ< GfðtÞ: The flow field at any
interior point x [ V(t) can be obtained once the flow variables at the boundary
are known. Since the velocity is fully prescribed on Gc(t), only the traction will
be determined there. The traction is imposed on the moving boundary, Gf(t),
where the value of the velocity will be found. More explicitly, equation (15) may
be rewritten as:Z

GcðtÞ

tðy; tÞ · JðxjyÞ dGy 2

Z
GfðtÞ

uðy; tÞ · ½nðy; tÞ · KðxjyÞ� dGy

þ Ca21

Z
GfðtÞ

½nðy; tÞ7 · nðy; tÞ� · JðxjyÞ dGy

2

Z
GcðtÞ

ucðyÞ · ½nðyÞ · KðxjyÞ� dGy ¼
cðx; tÞucðxÞ; x [ GcðtÞ

cðx; tÞuðx; tÞ; x [ GfðtÞ

(
ð18Þ

where conditions (11) and (14) are used. The unknowns in equation (18) are thus
t(x, t) for x [ Gc(t) and u(x, t) for x [ Gf(t), so that the values of the third and
fourth integrals are known.

The evolution of the free-surface is determined by solving equation (12). The
time derivative in the equation is approximated by an explicit Eulerian
finite-difference scheme. Let Dt be the time increment, so that at time t ¼ kDt;
the new position, xk, of a point on the free-surface is given by

xk ¼ xk21 þ uk21ðxk21ÞDt þ OðDtÞ; x [ GfðtÞ; ð19Þ

where uk21ðxk21Þ ¼ u½x ¼ xk21; t ¼ ðk 2 1Þt� is the velocity of the point at
the previous time step. The integral equation (19) relates the velocity and
traction at the current time. Once the flow field is determined at each time step,
t, the position of the moving boundary is updated. The evolution of Gf(t) is
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dictated by equation (19). The updated position of the nodes that belong to the
free-surface is thus determined once the velocity at the front is obtained from
the solution of equation (18).

The integrals in equation (18) are discretized into a finite sum of contributing
terms over the boundaries. In this work, the boundary elements are assumed to
be geometrically linear so that the velocity and traction are constant over each
element. This makes the proposed adaptive remeshing method and estimation
of curvature less difficult to implement since no interpolation of the flow
variables is needed at each time step. The use of higher-order elements is
possible, but may not be crucial given the mesh refinement and remeshing
capabilities involved in the current procedure. The traction is constant over flat
linear element, and is multiple valued at a corner node if higher-order elements
are used. In two dimensions, the traction is assumed to be double valued at
every node of a curved boundary. Another advantage of the constant boundary
element is that the value of c(x, t) is always and everywhere equal to 1/2. In
addition, the normal vector to each element is determined exactly.

5. Numerical results
In this section, the transient behavior of the flow is explored for different exit
conditions as the fluid emerges out of the channel. These conditions are based
on the behavior of fully developed JS fluid (upstream) inside the channel. Both
pre-critical and critical profiles will be considered for the Couette flow as We is
varied. The flow at the exit of the channel may be steady or unsteady, but in
practice, it is the latter that is encountered. This is the case, for instance, when
the lower plate is suddenly incepted from rest. The influence of both steady and
unsteady input profiles will be considered on the developing free-surface flow.
For simplicity, surface tension effect will be assumed negligible.

5.1 Response of a steady exit flow
Consider the response of the coating flow to steady Couette at the exit of the
channel. The objective of this section is to examine the influence of fluid
elasticity on the emergence of free-surface flow in the early stages of coating.
For simplicity, the profile inside the channel, and at the exit (x¼0), is assumed
to be fully developed, although the emerging flow corresponds to the sudden
inception of the lower plate. Thus, the flow inside the channel is assumed to
respond instantly to the inception. The domain of calculation is initially the
unit square ðx; yÞ [ ½0; 1� £ ½0; 1�: Only the Weissenberg number is varied and
the rest of the parameters are fixed to Re ¼ 1; z ¼ 0:2 and 1 ¼ 0:04: In this
case, the two critical Weissenberg numbers are Wec1 ¼ 1:89 and Wec2 ¼ 7:78;
so that the pre-critical, critical and post-critical ranges correspond, respectively,
to We , 1.89, 1.89 , We , 7.78, and We . 7.78.

The results corresponding to the pre-critical and critical ranges are shown
in Figure 4 for We [ [1, 7]. Note that the response in the post-critical range
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Figure 4.
Response to steady
Couette flow at the

channel exit (dashed
line). Evolution of the

free-surface for various
values of the

Weissenberg number
(Re ¼ 1, z ¼ 0.2 and

1 ¼ 0.04) in the
pre-critical range (We ,

1.89), and critical range
(1.89 , We , 7.78)
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is the same as that in the pre-critical range since the Couette profile is the
same in the two ranges. In all cases, the Couette profile is included for
reference (dashed curve) in addition to the free-surface profiles at the early
time stages of flow. Note that the velocity profile is normalized in
comparison with the case We ¼ 1: The response in the pre-critical range is
typically illustrated by We ¼ 1 flow. In this case, the Couette flow is linear,
similar to Newtonian flow. Right at the inception, and as expected, the
free-surface is initially linear with respect to y, similar to the Couette profile.
As the fluid emerges out of the channel, the shape of the melt front begins to
deviate from the linear profile and assumes a curved shape. The bulk of the
fluid trails further the fluid in the immediate vicinity of the moving lower
plate. After some time, the profile concavity changes, and the front tends to
bulge out. Numerical instabilities of the saw-tooth type are observed, which
are usually controlled by applying the smoothing technique. In the present
case, however, the instability remained localized (close to the lower plate),
and did not necessitate smoothing.

In the critical range, the Couette profile becomes non-linear. In this case,
there is a multiplicity of solution branches. Each steady velocity profile
depends on the initial conditions used to reach it. This statement may at first
appear meaningless since a steady-state solution does not generally depend on
initial conditions. However, when more than one steady-state solution exist,
each solution may correspond to a set of initial conditions. In the present
problem, the initial conditions correspond to the initial perturbation from the
base flow. In this study, the Couette profiles are taken to correspond to a flow
with an initial sudden inception. The influence of fluid elasticity in the critical
range is shown in Figure 4 for We ¼ 2; 2.5, 3, 4, 5, 6 and 7. All profiles at the
channel exit are non-linear as indicated by the dashed curves in the figure. As
We exceeds Wec1¼1.89, a dramatically different Couette profile is found as
indicated for We ¼ 2: The response of the coating flow is initially almost
linear, but it begins to exhibit an adverse behavior near the stationary plate. In
fact, a significant portion of the fluid actually moves in the opposite direction of
the main stream. The flow exhibits a vortex structure similar to lid-driven
cavity flow.

As elastic effects increase, the adverse flow decreases in intensity. The flow
at the channel exit begins to show a reduction in backward motion. The coating
flow adjusts to the exit profile, and more flow begins to move forward with the
lower plate (see the flows corresponding to We ¼ 2:5 and 3). The flow for this
range of Weissenberg numbers clearly indicates a difficulty in coating a plate
right after the onset of instability. In practice, this difficulty may translate into
the impossibility of coating a material once the flow has reached a critical
Weissenberg number as a result of plate acceleration. As We increases further,
the adverse flow disappears completely in the channel flow as depicted for
We ¼ 4; 6 and 7. However, the free-surface flow still experiences backward
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motion, with the flow gradually resembling that corresponding to We ¼ 1:
Finally, after We exceeds the second critical Weissenberg number, Wec2¼7.78,
the base flow becomes stable once again, and a linear exit profile is again
observed just like the pre-critical case.

5.2 Transient response to the inlet flow
Consider the influence of a developing channel flow on the emerging fluid.
Unlike the previous section, the exit flow is assumed to evolve from rest
under sudden inception. The influence of the Reynolds number in this case is
important since the acceleration term in equation (5(a)) is no longer zero. It
is generally found that the evolution of channel flow toward the steady-state is
monotonic when Re is small, and it is oscillatory when Re is relatively large.
Two cases will be considered to illustrate the influence of Re on coating in the
pre-critical and critical ranges of the Weissenberg number. The evolution of the
flow inside and outside the channel is followed from rest, at time t ¼ 0; when
the flow is induced by sudden inception, until the time when the channel flow
reaches the steady-state.

Consider again the pre-critical case, We ¼ 1 and Re ¼ 0:1: In this case, the
channel flow is expected to evolve monotonically to the linear Couette flow as
shown in Figure 5. The figure is not drawn to scale for clarity. The arrow

Figure 5.
Response to transient

Couette flow at the
channel exit. The figure
shows the development
of the exit flow (dashed

lines) from sudden
inception. Evolution of

the free-surface (solid
lines) for We ¼ 1,

Re ¼ 0.1, z ¼ 0.2 and
1 ¼ 0.04
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indicates the direction of flow development inside the channel. The figure
shows that the response of the coating flow differs from that in Figure 4 for the
same Weissenberg number ðWe ¼ 1Þ: Unlike the response to steady (linear)
Couette flow, in this case, the front exhibits some initial back flow, but
eventually changes concavity to become similar to the later stages in Figure 4.
The bulk behavior is, however, essentially the same in both cases.

In the critical range, oscillatory behavior is easier to detect, as typically
shown in Figure 6 for We ¼ 4 and Re ¼ 1: The arrows in the figure indicate
the sense of time evolution of the channel flow. Initially, there is a sudden
jump to (almost) linear Couette flow inside the channel. This is also confirmed
from the first curve shown for the front. There is a significant adverse flow
that develops with time. However, it may not be as strong as in the case
We ¼ 4 shown in Figure 4 for steady exit flow. Note that complete
steady-state is not fully restored inside the channel (although it is indicated by
1 in Figure 6); much longer time is needed to reach the state shown in
Figure 4. The oscillation in channel flow is inferred by the sense of the
arrows. Finally, it is important to observe, from Figures 4 ðWe ¼ 4Þ and 6,
that transient channel flow appears to have minimal effect on the overall
evolution of the coating process.

Figure 6.
Response to transient
Couette flow at the
channel exit. The figure
shows the development
of the exit flow (dashed
lines) from sudden
inception. Evolution of
the free-surface (solid
lines) for We ¼ 4,
Re ¼ 1, z ¼ 0.2 and
1 ¼ 0.04
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6. Discussion and conclusion
The major point that is being addressed in this discussion is the assumption
adopted in the present formulation to consider the flow as Newtonian as it
emerges from the channel. Several arguments can be used to justify this
assumption, but the argument of scale, and that regarding the change in flow
conditions at the channel exit are the main ones. It is made clear that the
assumption can be limiting, and it is adopted here, like most common
assumptions, for practical reasons. First, consider the change in flow
conditions.

In many flow configurations, overall flow conditions may change with time
or from one location to the other. The present blade-coating flow in Figure 1 is a
striking reflection of the latter case. The problem of die flow is another
illustration, but there is an important difference between the two flows as will
be argued shortly. Viscoelastic effects become significant whenever shear
and/or elongation flow is significant. As the fluid exits the channel, there is a
dramatic drop in shear rate. In fact, the free-surface flow, because of the
adherence conditions at the moving plate, is expected to move almost like a
rigid body. Given the absence of a driving pressure, or, more importantly, the
lack of mechanism for elongation flow, normal stress effects are also not
expected to be important. This is in sharp contrast with the die swell problem,
which exhibits a sudden expansion of the flow induced by normal stresses.
In blade coating, the absence of hydrostatic pressure causes normal stresses
to reduce significantly in the free-surface flow region, especially at the
free-surface itself, since pressure must be balanced by normal stress for
the traction to vanish (assuming negligible surface tension effect). It is the
magnitude of ux ; ›u=›x; or vy ; ›v=›y; that is crucial here, since it is
directly related to the magnitude of the (elastic) normal stress difference.

The assessment of the magnitude of the rate-of-strain tensor components,
including that of the average shear rate, is assessed upon comparison against
the magnitude of the shear rate at the channel exit. Three typical ranges of flow
are considered for the assessment of magnitude of the rate of strain, namely the
pre-critical range, the critical range and moderately critical range. The
comparison is typified in Figures 7-9 for We ¼ 1; 4 and 7, respectively. These
three flows correspond exactly to those in Figure 4, with Re ¼ 1; 1 ¼ 0:04 and
z ¼ 0:2: The distribution, with position y, of the magnitude of the shear rate at
the channel is included in the figures for reference. The average shear rate is
estimated by monitoring the ratio of the difference in the horizontal velocities at
the plate and at the free-surface over the free-surface height. The figures show,
along the free-surface, the distributions of the magnitude of the average shear
rate (2), as well as jvyj (3). For pre-critical flow ðWe ¼ 1Þ; the shear rate at the
channel exit is constant and is equal to one as shown in Figure 7. The figure
shows that the average shear rate in the free-surface flow region is roughly
twice smaller than the exit shear rate, except perhaps near the channel exit and

Transient
viscoelastic flow

787



at the front tip where a singularity develops. The quantity jvyj is even smaller,
roughly one order of magnitude smaller than the shear rate at the exit. The
comparisons for We ¼ 4 (Figure 8) and We ¼ 7 (Figure 9) lead to similar
observations. Recall that for We . 8, one recovers the same flow configuration
of the pre-critical range. In conclusion, the magnitude of the rate-of-strain
components appears to be generally smaller than that of the shear rate at the
channel exit). The normal components are one order of magnitude smaller. This
comparison should be indicative of the relative insignificance of elastic effects
in the free-surface flow region.

A scale argument can also be used to assess normal stress effects, by
considering the value of the Weissenberg number, We ¼ Ul=d: For a given
fluid, with l being fixed, the value of We is large whenever the typical velocity,
U, of the fluid is large, or whenever the typical length, d, is small. In other
words, the overall shear rate must be large for We or normal stress effects to be
significant. As the fluid exits the channel, the characteristic velocity remains of
the same order as inside the channel. The relaxation time does not change since
the fluid in question is still the same. However, d is no longer the (only)
characteristic length, especially for the flow far upstream from the exit. Of
course, the width of the fluid is O(d), but another characteristic length,
L, emerges, namely the horizontal extent of the fluid outside the channel,

Figure 7.
Relative magnitude of
shear and normal strain
rates at the final front for
a flow in the pre-critical
range (We ¼ 1, Re ¼ 1,
z ¼ 0.2 and 1 ¼ 0.04).
The figure shows (for
reference) the shear rate
at the channel exit (1),
and at the front, the
overall shear rate (2), the
distribution of j›u/›xj
(3), and that of j›v/›yj (4)
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which can be much larger than d. In this case, normal stress effects are
O(Ul/L) ! O(Ul/d), especially for a thin liquid. More precisely, viscoelastic
effects should not be important far downstream relative to channel flow.
However, they are expected to be more significant near the channel exit. Thus,
and expectedly so, the scale argument indicates that the assumption of
Newtonian flow is less valid in the very early transient stages of the
free-surface flow, but it should hold further downstream.

It is desirable to have a numerical implementation that is free of any
assumption, where the problem is solved in its entirety as a viscoelastic flow
problem. However, the moving boundary problem is extremely difficult to
solve in the presence of non-linear effects at high Weissenberg number and
inertia, involving a complex constitutive equation such as the JS model. There
is no method that can handle adequately both a highly non-linear and a
moving-domain problem. The simulation of high-Weissenberg flow remains
challenging even for problems with fixed domain (with and without a
free-surface). The BEM loses, in a drastic manner, its advantage over more
conventional methods when non-linearity is present. For highly non-linear
problems, domain discretization becomes unavoidable, whether the BEM or
other methods are used. In this case, remeshing of the domain is required,
which adds considerable difficulty to the numerical treatment.

Figure 8.
Relative magnitude of

shear and normal strain
rates at the final front for

a flow in the highly
critical range (We ¼ 4,

Re ¼ 1, z ¼ 0.2 and
1 ¼ 0.04). The figure

shows (for reference) the
shear rate at the channel
exit (1), and at the front,
the overall shear rate (2),

and the distribution of
j›v/›yj (3)
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In conclusion, a hybrid approach consisting of low-order dynamical systems
and the BEM is proposed for the simulation of the early stages of blade coating.
The stability and bifurcation of PCF of a JS fluid are investigated using the
Galerkin projection method. The viscoelastic model used here, displays
non-monotonicity of the shear-stress/shear-rate curve, and belongs to the wider
class of Oldroyd constitutive models that lead to the destabilization of Couette
flow. The viscoelastic velocity profile of the fully developed channel flow is
imposed at the exit of the channel as the driving flow for the fluid emerging out
of the channel. The fluid is assumed to be Newtonian as it exits the channel.
The justification of this assumption is based on the fact that the magnitude of
the rate-of-strain components is relatively small in the free-surface flow region,
except perhaps at the exit and at the tip where the free-surface meets the
moving plate. The BEM is particularly convenient in this case as it allows easy
implementation of adaptive meshing or remeshing to determine the evolution
of the moving front.

Three characteristic ranges of Weissenberg numbers are identified for the
PCF: the pre-critical, the critical and the post-critical ranges. In the pre- and
post-critical ranges, the linear Couette flow is unconditionally stable. In these
two ranges, the front exhibits a linear shape initially, and eventually swells in
the long-term. In the critical range, the channel velocity profile is non-linear,

Figure 9.
Relative magnitude of
shear and normal strain
rates at the final front for
a flow in the moderately
critical range (We ¼ 7,
Re ¼ 1, z ¼ 0.2 and
1 ¼ 0.04). The figure
shows (for reference) the
shear rate at the channel
exit (1), and at the front,
the overall shear rate (2),
and the distribution of
j›v/›yj (3)
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leading to strong adverse flow in the coating process near the first critical
point. At higher Weissenberg number, the adverse flow weakens, and
eventually disappears completely near the second critical point, beyond which
linear PCF is restored. The response to suddenly incepted flow shows that the
initial transients in the channel flow do not have a significant influence on the
coating process.
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